
Learning by creating: A case study in teaching computing
 to entry-level students

Vijayakumar Nanjappan
Hai-Ning Liang

Dept. of Computer Science and Software Engineering

Xi’an Jiaotong-Liverpool University

Introduction

 Learning programming concepts can be daunting

 Akin to learning a new language

 Involves multiple facets

 Computational thinking
 Syntactic thinking
 Developing tools

 Chinese students have limited exposure to programming prior to entering
university

 Reasons

 Programming only introduced in the 1980s in China
 Excluded from Gaokao (national standardized university test)

2

Introduction

 Chinese students face many challenges in learning programming

 Chinese educational system primarily focuses on
 Exam writing
 Memorization
 Repetition

 No practical, hands-on, and experiential learning

 Underperform in programming related subjects

 Choose subjects where programming is kept in a very small role

3

Introduction

 Introduced a new course in CSE003 to change this trend

 Smoothly transition the students into the realm of computer programming

 Encourage them to learn by constructing non-tangible artifacts

 Scratch Programming
 Visual programming language
 Developed by Lifelong Kindergarten Research Group at MIT media lab

 Normally a computer program contains text based instructions

 Written using a programming language (C, C++, Java and etc.)

4

Text-based Computer Program

 To print simple words on the computer screen

Text-based Instructions
#include<stdio.h>

int main()

 {
 printf(“Hello World\n”);

 return 0;

 }

Instructions Set

Figure 1: C program to print “Hello World” on the screen

5

Why Scratch?

 Avoids of the use of text based environments

 Skips learners to acquire syntax of programming language

 Graphical blocks represents different constructs
 (statements, loops, conditions, and variables)

 Allows students to concentrate on the principles of programming

 Observe the behaviour of a piece of code in their creations

 Supports novices in the acquisition of programming and computational

thinking skills

 Allows learners to create Interactive stories and games

6

Scratch – Visual Programming

 Graphical blocks are used instead of text-based instructions

The result of running
the program.

Figure 2: A Scratch program that contains a single block.

Graphical block #include<stdio.h>

int main()

 {
 printf(“Hello World\n”);

 return 0;

 }

7

Scratch – Visual Programming

 The Scratch environment

Figure 3. The Scratch environment (version 2 and above). Scratch is a block-based programming environment. Blocks (color-coded
objects in the middle component) are dragged onto the right component to create scripts. In the script above, for example, when there

is a mouse click action on the sprite object (orange cat) will move 10 steps.

Blocks

Script

Display
Area

8

Context of the case study

 CSE003 – Fundamentals of Computer Programming
 Foundational course – 2.5 module
 Runs 7 weeks at second half of the first semester
 Open to all but compulsory to Engineering and Computer Science students

 Fall of 2015 – 450 students
 STEM and Non-STEM students

 Designed to prepare students to cope with CS1 programming course

 Computer science students learn Java
 Engineering students learn C and C++

9

Teaching programming to entry-level students

 Scratch component
 Takes place in first 2 weeks
 2 hours lectures
 2 hours lab

Week Day Activity Learning Outcomes

1 Tuesday Lecture 1 Introduction to Scratch

Thursday Lab 1 – Tutorial 1 Introduction to Scratch (Practical exercises)

Friday Assignment Out

2 Tuesday Lecture 2 Discussion about the lab exercises

Thursday Lab 2 or Tutorial 2 Practice exercises (or work on assignment)

3 Tuesday Submission Scratch program and a short reflection report needed to be submitted

Table 1. Overview of first 2 weeks of learning activities.

10

Assignment

 Interactive program – animated storytelling/storyboard of their choice
 Student as the main character
 Length of the play (between 90 to 120 seconds)

 Sprites (objects used in their programme)
 Students own photo – minimum three costumes (different poses)

 Backdrops and sounds
 Minimum of 5 different background images
 Different music to begin and end the story

Compulsory Requirements User-created Scratch Library Other Sources

Sprites 3 Unlimited Unlimited

Costumes 3 Unlimited Unlimited

Backdrops Minimum 5

Sounds Minimum 5

Table 2. Assignment’s compulsory requirements when using the sprites, costumes, backdrops and sounds.

11

Assignment

 User-interface controls
 To begin and stop the program
 Pause/resume program at any point

 Script
 The code composed of programming blocks
 Must contain at least one block from each the nine-block palette
 11 types of blocks in Scratch (only 10 blocks are visible)

Device Key and Icons Function

Keyboard

Spacebar Pause and Resume

S Play

X Stop

R Re-play

Mouse
GreenFlag Play

StopButton Stop

Table 3. Descriptions of the required user controls in the Scratch programs.

Figure 4. The different types
of programming blocks in the

palettes in the Scratch
programming environment.

12

Data collection instruments

 Surveys (Questionnaires)
 First Survey

 Demographic information
 Prior programming experience
 Interested program of study in the future

 Second Survey
 Students’ experience using Scratch
 Effectiveness and usefulness in terms learning programming concepts
 Time spent learning Scratch

 Students were informed:
 Surveys were not compulsory
 Answers would not affect their grades

 Submission

 Individual Scratch projects
 Short reflection report

 University records
 Student’s final programme choice

Figure 5. A sample Scratch program completed by a student.
The final output is in the top left component. The bottom
component shows all the sprites and backdrops. The right

window shows the scripts of the highlighted sprite.

13

Results

 Enrolled students
 450 students
 356 students used in the data collection
 Excluded: incomplete surveys – non-submissions

 Gender Frequency (N) (%)

Male 265 74.4

Female 91 25.6

Table 4. Frequency distribution of the male and female
students.

Programme Frequency (N) %

STEM 320 89.1

Non-STEM 36 10.1

Table 5. Frequency distribution of STEM and Non-STEM students.

Programme
Male Female

N % N %

STEM 246 92.8 74 81.3

Non-STEM 19 7.2 17 18.7

Table 6. Frequency distribution of the male and female students in STEM and Non-
STEM programs.

14

Results

 Prior programming experience of the students

 Programming knowledge Frequency (N) (%)

No 285 80.1

Yes 71 19.9

YES NO

Figure 6. Students response to the question on “Have you learned programming before?”

Table 7. Frequency distribution of previous programming knowledge of CSE003 students.

15

Results

 Types of Scratch creations

Themes
STEM Non-STEM

N % N %

Personal Interests 94 29 17 47

Daily Experiences 88 28 9 25

Hollywood Inspired 68 21 4 11

Game-based 52 16 5 14

Socio-political concerns 18 6 1 3

Themes
Male Female

N % N %

Personal Interests 74 28 37 41

Daily Experiences 69 26 28 31

Hollywood Inspired 62 23 10 11

Game-based 45 17 12 13

Socio-political concerns 15 6 4 4

Themes
Total

N %

Personal Interests 111 31

Daily Experiences 97 27

Hollywood Inspired 72 20

Game-based 57 16

Socio-political concerns 19 0.05

Table 8. Types of creations based on STEM/Non-STEM students Table 9. Types of creations based on gender

Table 8. Types of creations based themes (percentage rounded to
the nearest number, except for the bottom-right one).

16

Sample Projects

 Sample Scratch programs developed by the students:

a) social-political concern b) personal interests

Figure 7. Sample Scratch programs developed by students (a-b)

17

Sample Projects

c) Hollywood-inspired d) Daily life

 Sample Scratch programs developed by the students:

Figure 7. Sample Scratch programs developed by students (c-d)

18

Sample Projects

e) Game-based projects

 Sample Scratch programs developed by the students:

Figure 7. Sample Scratch programs developed by students (e)

19

Factors influencing students marks

 Female students achieved higher grades
 STEM students also received better grades on average
 Game-based projects were best
 Socio-political concerns scored lowest

Figure 8. (Left) Mean differences between the marks of STEM/Non-STEM students; (Right) Mean differences between STEM/Non-STEM
students classified based on types of Scratch programs.

20

Factors influencing students marks

 Male students scored well in game-based projects
 Female students scored better in personal interests types of creations
 Not much different in other types of creations

Figure 9. Mean difference between the marks of female and male students based on the type of Scratch creations.

21

Factors influencing students marks

 STEM vs. Non-STEM students
 STEM students with prior programming experience performed better

 Male vs. Female students
 Female students with prior programming experience performed better

Figure 10. Mean difference in marks based on prior programming experience; (LEFT)
for STEM/Non-STEM students; and (RIGHT) Male/Female students.

22

Usefulness of Scratch

 Students’ perception of the usefulness of Scratch on helping them to learn

Figure 11. Frequency distribution of the students’ response before and after using
Scratch to complete their assignments in terms of their knowledge of programming

after before

23

Findings

 Students regardless of gender and program of study benefited from Scratch

 They found it interesting and useful to build things to support their learning of

programming

 Female students, Non-STEM students and students without prior background in
programming can do equally well (and sometimes even better)

 Most students prefer themes related to their personal interests and daily
experiences

24

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

