
Learning by creating: A case study in teaching computing
 to entry-level students

Vijayakumar Nanjappan
Hai-Ning Liang

Dept. of Computer Science and Software Engineering

Xi’an Jiaotong-Liverpool University

Introduction

 Learning programming concepts can be daunting

 Akin to learning a new language

 Involves multiple facets

 Computational thinking
 Syntactic thinking
 Developing tools

 Chinese students have limited exposure to programming prior to entering
university

 Reasons

 Programming only introduced in the 1980s in China
 Excluded from Gaokao (national standardized university test)

2

Introduction

 Chinese students face many challenges in learning programming

 Chinese educational system primarily focuses on
 Exam writing
 Memorization
 Repetition

 No practical, hands-on, and experiential learning

 Underperform in programming related subjects

 Choose subjects where programming is kept in a very small role

3

Introduction

 Introduced a new course in CSE003 to change this trend

 Smoothly transition the students into the realm of computer programming

 Encourage them to learn by constructing non-tangible artifacts

 Scratch Programming
 Visual programming language
 Developed by Lifelong Kindergarten Research Group at MIT media lab

 Normally a computer program contains text based instructions

 Written using a programming language (C, C++, Java and etc.)

4

Text-based Computer Program

 To print simple words on the computer screen

Text-based Instructions
#include<stdio.h>

int main()

 {
 printf(“Hello World\n”);

 return 0;

 }

Instructions Set

Figure 1: C program to print “Hello World” on the screen

5

Why Scratch?

 Avoids of the use of text based environments

 Skips learners to acquire syntax of programming language

 Graphical blocks represents different constructs
 (statements, loops, conditions, and variables)

 Allows students to concentrate on the principles of programming

 Observe the behaviour of a piece of code in their creations

 Supports novices in the acquisition of programming and computational

thinking skills

 Allows learners to create Interactive stories and games

6

Scratch – Visual Programming

 Graphical blocks are used instead of text-based instructions

The result of running
the program.

Figure 2: A Scratch program that contains a single block.

Graphical block #include<stdio.h>

int main()

 {
 printf(“Hello World\n”);

 return 0;

 }

7

Scratch – Visual Programming

 The Scratch environment

Figure 3. The Scratch environment (version 2 and above). Scratch is a block-based programming environment. Blocks (color-coded
objects in the middle component) are dragged onto the right component to create scripts. In the script above, for example, when there

is a mouse click action on the sprite object (orange cat) will move 10 steps.

Blocks

Script

Display
Area

8

Context of the case study

 CSE003 – Fundamentals of Computer Programming
 Foundational course – 2.5 module
 Runs 7 weeks at second half of the first semester
 Open to all but compulsory to Engineering and Computer Science students

 Fall of 2015 – 450 students
 STEM and Non-STEM students

 Designed to prepare students to cope with CS1 programming course

 Computer science students learn Java
 Engineering students learn C and C++

9

Teaching programming to entry-level students

 Scratch component
 Takes place in first 2 weeks
 2 hours lectures
 2 hours lab

Week Day Activity Learning Outcomes

1 Tuesday Lecture 1 Introduction to Scratch

Thursday Lab 1 – Tutorial 1 Introduction to Scratch (Practical exercises)

Friday Assignment Out

2 Tuesday Lecture 2 Discussion about the lab exercises

Thursday Lab 2 or Tutorial 2 Practice exercises (or work on assignment)

3 Tuesday Submission Scratch program and a short reflection report needed to be submitted

Table 1. Overview of first 2 weeks of learning activities.

10

Assignment

 Interactive program – animated storytelling/storyboard of their choice
 Student as the main character
 Length of the play (between 90 to 120 seconds)

 Sprites (objects used in their programme)
 Students own photo – minimum three costumes (different poses)

 Backdrops and sounds
 Minimum of 5 different background images
 Different music to begin and end the story

Compulsory Requirements User-created Scratch Library Other Sources

Sprites 3 Unlimited Unlimited

Costumes 3 Unlimited Unlimited

Backdrops Minimum 5

Sounds Minimum 5

Table 2. Assignment’s compulsory requirements when using the sprites, costumes, backdrops and sounds.

11

Assignment

 User-interface controls
 To begin and stop the program
 Pause/resume program at any point

 Script
 The code composed of programming blocks
 Must contain at least one block from each the nine-block palette
 11 types of blocks in Scratch (only 10 blocks are visible)

Device Key and Icons Function

Keyboard

Spacebar Pause and Resume

S Play

X Stop

R Re-play

Mouse
GreenFlag Play

StopButton Stop

Table 3. Descriptions of the required user controls in the Scratch programs.

Figure 4. The different types
of programming blocks in the

palettes in the Scratch
programming environment.

12

Data collection instruments

 Surveys (Questionnaires)
 First Survey

 Demographic information
 Prior programming experience
 Interested program of study in the future

 Second Survey
 Students’ experience using Scratch
 Effectiveness and usefulness in terms learning programming concepts
 Time spent learning Scratch

 Students were informed:
 Surveys were not compulsory
 Answers would not affect their grades

 Submission

 Individual Scratch projects
 Short reflection report

 University records
 Student’s final programme choice

Figure 5. A sample Scratch program completed by a student.
The final output is in the top left component. The bottom
component shows all the sprites and backdrops. The right

window shows the scripts of the highlighted sprite.

13

Results

 Enrolled students
 450 students
 356 students used in the data collection
 Excluded: incomplete surveys – non-submissions

 Gender Frequency (N) (%)

Male 265 74.4

Female 91 25.6

Table 4. Frequency distribution of the male and female
students.

Programme Frequency (N) %

STEM 320 89.1

Non-STEM 36 10.1

Table 5. Frequency distribution of STEM and Non-STEM students.

Programme
Male Female

N % N %

STEM 246 92.8 74 81.3

Non-STEM 19 7.2 17 18.7

Table 6. Frequency distribution of the male and female students in STEM and Non-
STEM programs.

14

Results

 Prior programming experience of the students

 Programming knowledge Frequency (N) (%)

No 285 80.1

Yes 71 19.9

YES NO

Figure 6. Students response to the question on “Have you learned programming before?”

Table 7. Frequency distribution of previous programming knowledge of CSE003 students.

15

Results

 Types of Scratch creations

Themes
STEM Non-STEM

N % N %

Personal Interests 94 29 17 47

Daily Experiences 88 28 9 25

Hollywood Inspired 68 21 4 11

Game-based 52 16 5 14

Socio-political concerns 18 6 1 3

Themes
Male Female

N % N %

Personal Interests 74 28 37 41

Daily Experiences 69 26 28 31

Hollywood Inspired 62 23 10 11

Game-based 45 17 12 13

Socio-political concerns 15 6 4 4

Themes
Total

N %

Personal Interests 111 31

Daily Experiences 97 27

Hollywood Inspired 72 20

Game-based 57 16

Socio-political concerns 19 0.05

Table 8. Types of creations based on STEM/Non-STEM students Table 9. Types of creations based on gender

Table 8. Types of creations based themes (percentage rounded to
the nearest number, except for the bottom-right one).

16

Sample Projects

 Sample Scratch programs developed by the students:

a) social-political concern b) personal interests

Figure 7. Sample Scratch programs developed by students (a-b)

17

Sample Projects

c) Hollywood-inspired d) Daily life

 Sample Scratch programs developed by the students:

Figure 7. Sample Scratch programs developed by students (c-d)

18

Sample Projects

e) Game-based projects

 Sample Scratch programs developed by the students:

Figure 7. Sample Scratch programs developed by students (e)

19

Factors influencing students marks

 Female students achieved higher grades
 STEM students also received better grades on average
 Game-based projects were best
 Socio-political concerns scored lowest

Figure 8. (Left) Mean differences between the marks of STEM/Non-STEM students; (Right) Mean differences between STEM/Non-STEM
students classified based on types of Scratch programs.

20

Factors influencing students marks

 Male students scored well in game-based projects
 Female students scored better in personal interests types of creations
 Not much different in other types of creations

Figure 9. Mean difference between the marks of female and male students based on the type of Scratch creations.

21

Factors influencing students marks

 STEM vs. Non-STEM students
 STEM students with prior programming experience performed better

 Male vs. Female students
 Female students with prior programming experience performed better

Figure 10. Mean difference in marks based on prior programming experience; (LEFT)
for STEM/Non-STEM students; and (RIGHT) Male/Female students.

22

Usefulness of Scratch

 Students’ perception of the usefulness of Scratch on helping them to learn

Figure 11. Frequency distribution of the students’ response before and after using
Scratch to complete their assignments in terms of their knowledge of programming

after before

23

Findings

 Students regardless of gender and program of study benefited from Scratch

 They found it interesting and useful to build things to support their learning of

programming

 Female students, Non-STEM students and students without prior background in
programming can do equally well (and sometimes even better)

 Most students prefer themes related to their personal interests and daily
experiences

24

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

